Page 1



Joint-Working-Group (Parlay, ETSI TISPAN Project OSA, 3GPP CT5)

C5-0700139
Meeting #38, 7 - 9 Feb 2007, Vancouver, CANADA 
	CR-Form-v9.1

	CHANGE REQUEST

	

	(

	29.199-05
	CR
	CRNum
	(

rev
	-
	(

Current version:
	7.0.0
	(


	

	For HELP on using this form look at the pop-up text over the (
 symbols. Comprehensive instructions on how to use this form can be found at http://www.3gpp.org/specs/CR.htm.

	


	Proposed change affects:
(

	UICC apps(

	
	ME
	
	Radio Access Network
	
	Core Network
	X


	

	Title:
(

	Add missing support for stateless delivery status reports

	
	

	Source to WG:
(

	Cingular, Alcatel-Lucent, Orange

	Source to TSG:
(

	

	
	

	Work item code:
(

	OSA3
	
	Date: (

	31/01/2007

	
	
	
	
	

	Category:
(

	B
	
	Release: (

	Rel-7

	
	Use one of the following categories:
F  (correction)
A  (corresponds to a correction in an earlier release)
B  (addition of feature), 
C  (functional modification of feature)
D  (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
R97
(Release 1997)
R98
(Release 1998)
R99
(Release 1999)
Rel-4
(Release 4)
Rel-5
(Release 5)
Rel-6
(Release 6)
Rel-7
(Release 7)
Rel-8
(Release 8)

	
	

	Reason for change:
(

	Add missing support for asynchronous notification of delivery status reports

	
	

	Summary of change:
(

	A new parameter is added to support the sending of  multimedia messages with additional descriptions.
Additional errors is added to handle compatibility.

A new manager interface is added to enable the reception of delivery receipts.

A new application side interface is added for the delivery of the receipts.

	
	

	Consequences if 
(

not approved:
	There are two main reasons why this enhancement is necessary for Parlay X SMS/Multimedia Message. The first reason is that there are a large amount of messages that is sent without any interest in the applications if they are delivered or not. Typically examples are commercial SMS/MMS. These will require the PX Gwy to store and maintain the state of the message to enable polling of the status which will result in a more costly solution for the operator (i.e. extra database transactions) while in the proposed solution, using this new option without any call back will enable these large amount of messages to be sent with less amount of transactions i.e. cost for the operator.

The second reason is the approved change to the Parlay MMM API to enable to send messages “with Notify”. The proposed change to Parlay X will enable Parlay X Gwys to utilize this new feature fully, i.e. enable applications on Parlay X level to use the with Notify functionality

	
	

	Clauses affected:
(

	8.1.1, 8.5, 8.6, 9.1.3, 9.1.4

	
	

	
	Y
	N
	
	

	Other specs
(

	
	X
	 Other core specifications
(

	

	affected:
	
	X
	 Test specifications
	

	
	
	X
	 O&M Specifications
	

	
	

	Other comments:
(

	


	1st Modified Section


Detailed service description

Currently, in order to programmatically receive and send Multimedia Messages, it is necessary to write applications using specific protocols to access MMS functions provided by network elements (e.g. MMS-C). This approach requires application developers to have a high degree of network expertise. 

This contribution defines a Multimedia Messaging Web Service that can map to SMS, EMS, MMS, IM, E-mail, etc.

The choice is between defining one set of interfaces per messaging network or a single set common to all networks; e.g. we could define sendMMS, sendEMS, sendSMS, etc., or just use sendMessage. Although the more specific the API the easier it is to use, there are advantages to a single set of network-neutral APIs. These advantages include:

· improved service portability;

· lower complexity, by providing support for generic user terminal capabilities only.

For this version of the Parlay X specification, we provide sets of interfaces for two messaging Web Services: Short Messaging (part 7) and Multimedia Messaging (this part), which provides generic messaging features (including SMS).

Multimedia Messaging provides operations (see clause 8.1, SendMessage API) for sending a Multimedia message to the network and a polling mechanism for monitoring the delivery status of a sent Multimedia message. It also provides an asynchronous notification mechanism for delivery status (see clause 8.3, MessageNotification API).

Multimedia Messaging also allows an application to receive Multimedia messages. Both a polling (see clause 8.2, ReceiveMessage API) and an asynchronous notification mechanism (see clause 8.3, Message Notification API) are available.

Figure 4.1 shows an example scenario using sendMessage and getMessageDeliveryStatus to send data to subscribers and to determine if the data has been received by the subscriber. The application invokes a Web Service to retrieve a stock quote (1) and (2) and sends the current quote - sendMessage - using the Parlay X Interface (3) of the Multimedia Messaging Web Service. After invocation, the Multimedia Message Web Service sends the message to an MMS-C using the MM7 interface (4) for onward transmission (5) to the subscriber over the Mobile network.

Later, when the next quote is ready, the application checks to see - getMessageDeliveryStatus - if the previous quote has been successfully delivered to the subscriber.  If not, it may for instance perform an action (not shown) to provide a credit for the previous message transmission. This way, the subscriber is only charged for a stock quote if it is delivered on time.


[image: image1.wmf]MMSC

-X

component

Multimedia

Message Web

Service

Parlay X I/F

MMSC

MMS-C

MM7 VASP

Interface

Mobile network

Stock Quote

Web Service

Stock Quote

Web Service

……

..

content1

=

get

StockQuote

()

…

..

Retrieve

user Profile

…

.

messageId

=

sendMessage

(

content

1

)

…

.

status

=

getMessageDeliveryStatus

(

messageId)

if

status

=Message_Waiting

…

.

fi

…

content2

=

get

StockQuote

()

messageId

=

sendMessage

(

content2

)

User

profile

1

2

3

4

5

6


Figure 4.1: Multimedia Messaging Scenario

Alternatively this service could have been built using WAP push features in the network.

Figure 4.2 shows an example scenario using sendMessage and getMessageDeliveryStatus to send a link to subscribers and to determine if the data has been received by the subscriber. The application invokes a Web Service to generate a stock quote graph (1) and (2) and sends the current quote as a WAP push link - sendMessage - using the Parlay X Interface (3) of the Multimedia Messaging Web Service. After invocation, the Multimedia Message Web Service sends the message to an SMS (4) for onward transmission (5) to the subscriber over the Mobile network. The subscriber can then open the link and access his content.

[image: image2.jpg]
Figure 4.2: WAP push scenario

Additionaly an enhancement has been introduced to the PX to eliminate the storing of state of the message in the Parlay X server for two reasons. The first reason is that there are a large amount of messages that is sent without any interest in the applications if they are delivered or not. Typically examples are commercial SMS/MMS. These will require the PX Gwy to store and maintain the state of the message to enable polling of the status which will result in a more costly solution for the operator (i.e. extra database transactions) while in the proposed solution, using this new option without any call back will enable these large amount of messages to be sent with less amount of transactions i.e. cost for the operator.

The second reason is the approved change to the Parlay MMM API to enable to send messages “with Notify”. The proposed change to Parlay X will enable Parlay X Gwys to utilize this new feature fully, i.e. enable applications on Parlay X level to use the with Notify functionality.

	Next Modified Section


8.1
Interface: SendMessage

Operations to send messages and check status on sent messages.

8.1.1
Operation: SendMessage

Request to send a Message to a set of destination addresses, returning a requestIdentifier to identify the message. The requestIdentifier can subsequently be used by the application to poll for the message status, i.e. using getMessageDeliveryStatus to see if the message has been delivered or not. The content is sent as one or more  attachments as specified in SOAP Messages with Attachments [7].

addresses may include group URIs as defined in the Address List Management specification. If groups are not supported, a PolicyException (POL0006) will be returned to the application.

Optionally the application can also indicate the sender address (senderAddress), i.e. the string that is displayed on the user's terminal as the originator of the message, the message priority, the message subject, the charging information and a receiptRequest. The receiptRequest which is a SimpleReference structure indicates the application endpoint, interface used for notification of delivery receipt and a correlator that uniquely identifies the sending request. By invoking this operation with the optional receiptRequest part the application requires to receive the notification of the status of the message delivery.

If notification mechanism is not supported by a network a fault (SVC0283) will be returned to the application and the message will not be sent to the addresses specified. Notification to the application is done by invoking the notifyMessageDeliveryReceipt operation at the endpoint specified in receiptRequest.

The correlator provided in the receiptRequest must be unique for this Web Service and application at the time the notification is initiated, otherwise a ServiceException (SVC0005) will be returned to the application.

Using the asyncNotify mode will require that the Network, e.g. the SMSC will be able to assign a unique MessageId per senderAddress, enabling the Application receiving delivery receipts to correlate the sent SMS with the receipt. If the Applications using this mode don’t require any delivery receipt this is not an issue.

8.1.1.1
Input message: SendMessageRequest

	Part name
	Part type
	Optional
	Description

	Addresses
	xsd:anyURI [1..unbounded]
	No
	Destination addresses for the Message.

	SenderAddress
	xsd:string
	Yes
	Message sender address. This parameter is not allowed for all 3rd party providers. Parlay X server needs to handle this according to a SLA for the specific application and its use can therefore result in a PolicyException.

	Subject
	xsd:string
	Yes
	Message subject. If mapped to SMS this parameter will be used as the senderAddress, even if a separate senderAddress is provided.

	Priority
	MessagePriority
	Yes
	Priority of the message. If not present, the network will assign a priority based on an operator policy.

	Charging
	Common:Charging
Information
	Yes
	Charging to apply to this message.

	ReceiptRequest
	Common:Simple
Reference
	Yes
	It defines the application endpoint, interfaceName and correlator that will be used to notify the application when the message has been delivered to terminal or if delivery is impossible.

	asyncNotify
	xsd:boolean
	No
	The asyncNotify parameter enables an application to send messages without storing any state of the message in the Parlay X server. Notifications of delivery can be received based on the Delivery Notification subscription mechanism described  below. If no call back is defined the message delivery or failure to be delivered will not be accessible by the application. 


NOTE:
The input message contains one or more attachments, with appropriate content as defined by SOAP Messages with Attachments [7].

8.1.1.2
Output message: SendMessageResponse

	Part name
	Part type
	Optional
	Description

	result
	xsd:string
	No
	It is a correlation identifier that is used in a getMessageDeliveryStatus message invocation, i.e. to poll for the delivery status of all of the sent Messages.  In case the asyncNotify mode is used this parameter will contain the network message ID that can be used by the application to correlate messages with delivery notifications.


8.1.1.3
Referenced faults

ServiceException from [6]:

· SVC0001 - Service error.

· SVC0002 - Invalid input value.

· SVC0004 - No valid addresses.

· SVC0006 - Invalid group.

· SVC0283 - Delivery Receipt Notification not supported

· SVC0284 – Statefull operation not supported

· SVC0285 – Asyncnotify operation not supported
PolicyException from [6]:

· POL0001 - Policy error.

· POL0006 - Groups not allowed.

· POL0007 - Nested groups not allowed.

· POL0008 - Charging not supported.

8.1.2
Operation: GetMessageDeliveryStatus

This is a poll method used by the application to retrieve delivery status for each message sent as a result of a previous sendMessage message invocation. The requestIdentifier parameter identifies this previous message invocation.

8.1.2.1
Input message: GetMessageDeliveryStatusRequest

	Part name
	Part type
	Optional
	Description

	RequestIdentifier
	xsd:string
	No
	Identifier related to the delivery status request.


8.1.2.2
Output message: GetMessageDeliveryStatusResponse

	Part name
	Part type
	Optional
	Description

	result
	DeliveryInformation [0..unbounded]
	Yes
	It is an array of status of the messages that were previously sent. Each array element represents a sent message: i.e. its destination address and its delivery status. 


8.1.2.3
Referenced faults

ServiceException from [6]:

· SVC0001 - Service error.

· SVC0002 - Invalid input value.

PolicyException from [6]:

· POL0001 - Policy error.

	Next Modified Section


8.5
Interface asyncNotifyMessageDeliveryReceiptManager

The multimedia message delivery receipt manager enables applications to receive delivery receipts for messages that were sent using asyncNotify mode, i.e. setting the asyncNotify parameter to true.
8.5.1
Operation: startAsyncNotifyMessageDeliveryReceipt

The application invokes the startAsyncNotifyMessageDeliveryReceipt operation to notify the ParlayX server that application is ready to receive delivery receipts according for the specified messageServiceActivationNumber, but also the URL of the application that is expecting the delivery receipt.
8.5.1.1
Input message: startAsyncNotifyMessageDeliveryReceiptRequest

	Part name
	Part type
	Optional
	Description

	Reference
	common:SimpleReference
	No
	Notification endpoint definition

	messageServiceActivationNumber
	xsd:string
	No
	Number associated with the invoked Message service, i.e. the destination address used by the terminal to send the message.



8.5.1.2
Output message: startStatelessMessageDeliveryReceiptResponse

	Part name
	Part type
	Optional
	Description

	None
	
	
	


8.5.1.3
Referenced faults

ServiceException from [6]

· SVC0001 – Service error

· SVC0002 – Invalid input value

· SVC0005 – Duplicate correlator

· SVC0008 – Overlapping Criteria
· SVC0285 – Asyncnotify operation not supported
PolicyException from [6]

· POL0001 – Policy error
8.5.2

Operation: stopMultimediaDeliveryReceipt

The application invokes the stopAsyncNotifyMessgaeDeliveryReceipt operation to notify the ParlayX server that the application is not ready for receiving the delivery receipt.

8.5.2.1 Input message: stopAsyncNotifyMessageDeliveryReceiptRequest

	Part name
	Part type
	Optional
	Description

	Correlator
	xsd:string
	No
	Correlator of request to end 


8.5.2.2
Output message: stopAsyncNotifyMessageDeliveryReceiptResponse

	Part name
	Part type
	Optional
	Description

	None
	
	
	


8.5.2.3
Referenced faults

ServiceException from [6]

· SVC0001 – Service error

· SVC0002 – Invalid input value

PolicyException from [6]

· POL0001 – Policy error
8.6

Interface notifyAsyncNotifyMessageDeliveryReceipt
This Web Service at the application side allows the Parlay X server to send multimedia message delivery receipts using the notification functionality.
8.6.1
Operation: notifyAsyncNotifyMessageDeliveryReceipt

The notifyAsyncNotifyMessageDeliveryReceipt operation must be implemented by a Web Service at the application side if it requires notification of multimedia message delivery receipts. The operation will be invoked by the Parlay X server to notify the application when a multimedia message sent by an application has been delivered or not.

For the Delivery Report, a Web Service on the Enterprise has to implement this operation.
8.6.1.1 Input message: notifyStatelessMessageReceiptRequest
	Part name
	Part type
	Optional
	Description

	deliveryInfo
	Xsd:DeliveryInfo [1..unbounded]
	No
	A struct that contains the Status that maps to the destinationAddress. A Parlay X server can store a set of delivery information for an application sending a set of these in one call.

The MessageID is always filled in this mode to enable the application to correlate between the sent multimedia message and the delivery information.


8.6.1.2
Output message: notifyStatelessMessageDeliveryResponse
	Part name
	Part type
	Optional
	Description

	None
	
	
	


8.6.1.3
Referenced faults

ServiceException from [6]:

· SVC0001 - Service error.
	Next Modified Section


9.1.3
SVC0284: Statefull operation not supported

	Name
	Description

	Message Id
	SVC0284

	Text
	Statefull operation not supported

	Variables
	


9.1.4
SVC0285: Stateless operation not supported

	Name
	Description

	Message Id
	SVC0285

	Text
	AsyncNotify operation not supported

	Variables
	


	End of modifications


































































































































































































































































�PAGE \# "'Page: '#'�'"  �� Document number

�PAGE \# "'Page: '#'�'"  �� Enter the specification number in this box. For example, 04.08 or 31.102. Do not prefix the number with anything . i.e. do not use "TS", "GSM" or "3GPP" etc.

�PAGE \# "'Page: '#'�'"  �� Enter the CR number here. This number is allocated by the 3GPP support team.  It consists of at least three digits, padded with leading zeros if necessary.

�PAGE \# "'Page: '#'�'"  �� Enter the revision number of the CR here. If it is the first version, use a "-".

�PAGE \# "'Page: '#'�'"  �� Enter the version of the specification here. This number is the version of the specification to which the CR was written and (normally) to which it will be applied if it is approved. Make sure that the latest version of the specification (of the relevant release) is used when creating the CR. If unsure what the latest version is, go to � HYPERLINK "http://www.3gpp.org/3G_Specs/3G_Specs.htm" ��� � HYPERLINK "http://www.3gpp.org/specs/specs.htm" ��http://www.3gpp.org/specs/specs.htm�.

�PAGE \# "'Page: '#'�'"  �� For help on how to fill out a field, place the mouse pointer over the special symbol closest to the field in question.

�PAGE \# "'Page: '#'�'"  �� Mark one or more of the boxes with an X.

�PAGE \# "'Page: '#'�'"  �� SIM / USIM / ISIM applications.

�PAGE \# "'Page: '#'�'"  �� Enter a concise description of the subject matter of the CR. It should be no longer than one line.  Do not use redundant information such as "Change Request number xxx to 3GPP TS xx.xxx".

One or more organizations (3GPP Individual Members) which drafted the CR and are presenting it to the Working Group.

For CRs agreed at Working Group level, the identity of the WG.  Use the format "x WGn" where �	x = "CT" for TSG CT, "RAN" for TSG RAN, "SA" for TSG SA, "GERAN" for TSG GERAN; �PAGE \# "'Page: '#'�'"  ���	n = digit identifying the Working Group; for CRs drafted during the TSG meeting itself, use "TSG x". �Examples: "CT WG4", "RAN WG5", "GERAN WG3", "TSG SA".

�PAGE \# "'Page: '#'�'"  �� Enter the acronym for the work item which is applicable to the change. This field is mandatory for category F, B & C CRs for release 4 and later. A list of work item acronyms can be found in the 3GPP work plan. See � HYPERLINK "http://www.3gpp.org/ftp/information/work_plan/" ��http://www.3gpp.org/ftp/information/work_plan/� .

�PAGE \# "'Page: '#'�'"  �� Enter the date on which the CR was last revised.  Format to be interpretable by English version of MS Windows ® applications, e.g. 19/02/2002.

�PAGE \# "'Page: '#'�'"  �� Enter a single letter corresponding to the most appropriate category listed below. For more detailed help on interpreting these categories, see the Technical Report �HYPERLINK "http://www.3gpp.org/ftp/Specs/html-info/21900.htm"��21.900� "TSG working methods".

�PAGE \# "'Page: '#'�'"  �� Enter a single release code from the list below.

�PAGE \# "'Page: '#'�'"  �� Enter text which explains why the change is necessary.

�PAGE \# "'Page: '#'�'"  �� Enter text which describes the most important components of the change. i.e. How the change is made.

�PAGE \# "'Page: '#'�'"  �� Enter here the consequences if this CR were to be rejected. It is mandatory necessary to complete this section only if the CR is of category "F" (i.e. correction), though it may well be useful for other categories.

�PAGE \# "'Page: '#'�'"  �� Enter the number of each clause which contains changes.

�PAGE \# "'Page: '#'�'"  �� Tick "yes" box if any other specifications are affected by this change.  Else tick "no".  You MUST fill in one or the other.

�PAGE \# "'Page: '#'�'"  �� List here the specifications which are affected or the CRs which are linked.

�PAGE \# "'Page: '#'�'"  �� Enter any other information which may be needed by the group being requested to approve the CR. This could include special conditions for it's approval which are not listed anywhere else above.



_1107096053.doc
[image: image1.emf][image: image2.emf]

MMSC





-X





component











Multimedia Message Web Service





Parlay X I/F





MMSC





MMS-C





MM7 VASP





Interface





Mobile network





Stock Quote





Web Service





Stock Quote





Web Service





……





..





content1





=





get





StockQuote





()





…





..





Retrieve





user Profile





…





.





messageId





=





sendMessage





(





content1





)





…





.





status





=





getMessageDeliveryStatus





(





messageId)





if 





status=Message_Waiting





…





.





fi





…





content2





=





get





StockQuote





()





 





messageId





=





sendMessage





(





content2





)





User





profile





1





2





3





4





5





6









